Machine Learning-Driven Predictive Models for Urban Sustainability in the Context of Digital Transformation

Authors

  • Shamina Israr Tithi * Earth and Environmental sciences, Brooklyn College, CUNY, USA.

https://doi.org/10.48313/iee.v1i2.42

Abstract

Societal considerations make sustainable urban planning in the age of energy and digital revolution paramount. By using state-of-the-art methods for analyzing massive datasets, such as Artificial Intelligence (AI) and Machine Learning (ML), we may get a better grasp of past data and more effectively forecast future occurrences using information gathered from IoT devices. The effects of energy transformation and environmental policy were examined, as were the long-term consequences of specific activities, using a multi-dimensional historical analysis of air pollution that this research used. Predictions of air pollution were also made using ML methods that included geographical considerations. Incorporating data from numerous sites and assessing the effect of neighboring sensors on predictions, this research used many low-cost air sensors categorized as Internet of Things (IoT) devices. Regression models, Deep Neural Networks (DNNs), and ensemble learning were among the ML techniques examined. There was an investigation into the feasibility of using such forecasts in open-source IT mobile systems. The study took place in Kraków, Poland, a city with a long history of air pollution and a UNESCO World Heritage Site. Additionally, Kraków is in charge of creating clean mobility zones and banning the use of solid fuels for heating. According to the study, increasing the city's population has no negative effect on PMx concentrations. The main aspect in bettering air quality, particularly for PMx, is shifting from coal-based to sustainable energy sources. Transportation has a less significant impact. Using linear ML models yields the best results when attempting to forecast infrequent smog episodes. Building a smart city that considers the effects of air pollution on quality of life may be greatly advanced by acting on the findings of this study.   

References

  1. [1] Zhang, L., Su, D., Guo, W., & Li, S. (2022). Empirical study on urban sustainable development model based on identification of advantages and disadvantages. Frontiers in sustainable cities, 4, 894658. https://doi.org/10.3389/frsc.2022.894658

  2. [2] Raihan, A., Ridwan, M., Salehi, M., & Zimon, G. (2025). Influences of financial development and energy price on renewable energy: An Italian case. Energy engineering, 122(2), 1–22. https://doi.org/10.32604/ee.2025.059016

  3. [3] Raihan, A., Voumik, L. C., Ridwan, M., Akter, S., Ridzuan, A. R., Wahjoedi, … & Ismail, N. A. (2024). Indonesia’s path to sustainability: Exploring the intersections of ecological footprint, technology, global trade, financial development and renewable energy. In Alareeni, B. & Elgedawy, I. (Eds.), Opportunities and risks in AI for business development: Volume 1 (pp. 1–13). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-65203-5_1

  4. [4] Kurniawati, T., Rahmizal, M., Ridwan, M., Aspy, N. N., Mahjabin, T., Eleais, M., & Ridzuan, A. R. (2025). Reassessing the load capacity curve hypothesis in ASEAN-5: Exploring energy intensity, trade, and financial inclusion with advanced econometric techniques. International journal of energy economics and policy, 15(2), 195–208. https://www.econjournals.com/index.php/ijeep/article/download/17328/8596/43212

  5. [5] Wesz, J. G. B., Miron, L. I. G., Delsante, I., & Tzortzopoulos, P. (2023). Urban quality of life: A systematic literature review. Urban science, 7(2), 56. https://doi.org/10.3390/urbansci7020056

  6. [6] Urbee, A. J., Hasan, M. A., Ridwan, M., & Dewan, M. F. (2025). Adaptation and resilience in the face of climate-induced migration: Exploring coping strategies in the urban economy of barishal metropolitan city. Environment, innovation and management, 1, 2550005. https://doi.org/10.1142/S306090112550005X

  7. [7] Ridwan, M., Tahsin, M. S., Al-Absy, M. S. M., Eleais, M., Ridzuan, A. R., & Mukthar, K. P. J. (2025). Economic Alchemy: Unraveling the nexus between trade openness, inflation, exchange rates, and economic growth in bangladesh. International journal of economics and financial issues, 15(3), 244. https://doi.org/10.32479/ijefi.17779

  8. [8] Raihan, A., Ridwan, M., Sarker, T., Atasoy, F. G., Zimon, G., Bari, A. B. M. M., … & Mohajan, B. (2025). The influence of different environmental factors toward Vietnam’s net-zero emissions goal. Innovation and green development, 4(3), 100229. https://doi.org/10.1016/j.igd.2025.100229

  9. [9] Liang, L., & Gong, P. (2020). Urban and air pollution: A multi-city study of long-term effects of urban landscape patterns on air quality trends. Scientific reports, 10(1), 18618. https://doi.org/10.1038/s41598-020-74524-9

  10. [10] Jonek-Kowalska, I. (2023). Assessing the effectiveness of air quality improvements in polish cities aspiring to be sustainably smart. Smart cities, 6(1), 510–530. https://doi.org/10.3390/smartcities6010024

  11. [11] Raihan, A., Hasnat, M. Al, Rahman, S. M., Ridwan, M., Rahman, M. M., Islam, M. T., … & Bari, A. B. M. M. (2025). Recent advancements in alternative energies, technological innovations, and optimization strategies for seaport decarbonization. Innovation and green development, 4(3), 100252. https://doi.org/10.1016/j.igd.2025.100252

  12. [12] Raihan, A., Zimon, G., Ridwan, M., Rahman, M. M., & Salehi, M. (2025). Role of mineral resource rents, renewable energy, and energy efficiency toward carbon neutrality in China. Energy nexus, 17, 100394. https://doi.org/10.1016/j.nexus.2025.100394

  13. [13] Gharbi, I., Rahman, M. H., Muryani, M., Esquivias, M. A., & Ridwan, M. (2025). Exploring the influence of financial development, renewable energy, and tourism on environmental sustainability in Tunisia. Discover sustainability, 6(1), 127. https://doi.org/10.1007/s43621-025-00896-5

  14. [14] Raihan, A., Ridwan, M., Zimon, G., Rahman, J., Tanchangya, T., Bari, A. B. M. M., … & Akter, R. (2025). Dynamic effects of foreign direct investment, globalization, economic growth, and energy consumption on carbon emissions in Mexico: An ARDL approach. Innovation and green development, 4(2), 100207. https://doi.org/10.1016/j.igd.2025.100207

  15. [15] Ridwan, M., Akther, A., Al Absy, M. S. M., Tahsin, M. S., Bin Ridzuan, A. R., Yagis, O., & Mukhta, K. P. (2024). The role of tourism, technological innovation, and globalization in driving energy demand in major tourist regions. International journal of energy economics and policy, 14(6), 675–689. 10.32479/ijeep.17344.

  16. [16] Ridwan, M., Akther, A., Tamim, M. A., Ridzuan, A. R., Esquivias, M. A., & Wibowo, W. (2024). Environmental health in BIMSTEC: The roles of forestry, urbanization, and financial access using LCC theory, DKSE, and quantile regression. Discover sustainability, 5(1), 429. https://doi.org/10.1007/s43621-024-00679-4

  17. [17] Ridwan, M., Aspy, N. N., Bala, S., Hossain, M. E., Akther, A., Eleais, M., & Esquivias, M. A. (2024). Determinants of environmental sustainability in the United States: Analyzing the role of financial development and stock market capitalization using LCC framework. Discover sustainability, 5(1), 319. https://doi.org/10.1007/s43621-024-00539-1

  18. [18] Onwe, J. C., Ridzuan, A. R., Uche, E., Ray, S., Ridwan, M., & Razi, U. (2024). Greening Japan: Harnessing energy efficiency and waste reduction for environmental progress. Sustainable futures, 8, 100302. https://doi.org/10.1016/j.sftr.2024.100302

  19. [19] Danek, T., Weglinska, E., & Zareba, M. (2022). The influence of meteorological factors and terrain on air pollution concentration and migration: a geostatistical case study from Krakow, Poland. Scientific reports, 12(1), 11050. https://doi.org/10.1038/s41598-022-15160-3

  20. [20] Zaręba, M., Danek, T., & Zając, J. (2020). On including near-surface zone anisotropy for static corrections computation—Polish Carpathians 3D seismic processing case study. Geosciences, 10(2), 66. https://doi.org/10.3390/geosciences10020066

  21. [21] Raihan, A., Atasoy, F. G., Coskun, M. B., Tanchangya, T., Rahman, J., Ridwan, M., … & Yer, H. (2024). Fintech adoption and sustainable deployment of natural resources: Evidence from mineral management in Brazil. Resources policy, 99, 105411. https://doi.org/10.1016/j.resourpol.2024.105411

  22. [22] Raihan, A., Ibrahim, S., Ridwan, M., Rahman, M. S., Bari, A. B. M. M., & Guneysu Atasoy, F. (2025). Role of renewable energy and foreign direct investment toward economic growth in Egypt. Innovation and green development, 4(1), 100185. https://doi.org/10.1016/j.igd.2024.100185

  23. [23] Rahman, M., Al Amin, M., Hasan, R., Hossain, S. M. T., Rahman, M. H., & Rashed, R. A. M. (2025). A Predictive AI framework for cardiovascular disease screening in the us: Integrating EHR data with machine and deep learning models. British journal of nursing studies, 5(2), 40–48. https://doi.org/10.32996/bjns.2025.5.2.5

  24. [24] Rahman, M. D. H., Rahaman, M., Arafat, Y., Rahat, S. K. R. U. I., Hasan, R., Rimon, S. M. T. H., & Dipa, S. A. (2025). Artificial intelligence for chronic kidney disease risk stratification in the USA: Ensemble vs. deep learning methods. British journal of nursing studies, 5(2), 20–32. https://doi.org/10.32996/bjns.2025.5.2.3

  25. [25] Breque, M., De Nul, L., & Petridis, A. (2021). European commission, directorate-general for research and innovation. Industry 5.0: Towards a sustainable, human-centric and resilient european industry. https://apre.it/wp-content/uploads/2025/06/Shaping-the-future.pdf

  26. [26] Włodyka, E. M. (2024). Implementation of e-government and artificial intelligence in polish public administration. TalTech journal of european studies, 14(2), 118–136. https://doi.org/10.2478/bjes-2024-0019

  27. [27] Poland, S. (2024). Accessed on May 10 2024. https://stat.gov.pl/en/

  28. [28] Rahat, S. K. R. U. I., RAHMAN, M. D. H., Arafat, Y., Rahaman, M., Hasan, M. M., & Amin, M. Al. (2025). Advancing diabetic retinopathy detection with ai and deep learning: Opportunities, limitations, and clinical barriers. British journal of nursing studies, 5(2), 01–13. https://doi.org/10.32996/bjns.2025.5.2.1

  29. [29] Khan, M. R. I., Tahsin, M. S., Al Mamun, A., Al-Samad, K., Ahmed, H., Al Wahid, S. K. A., … & Khan, M. R. I. (2025). Multimodal machine learning for proactive supply chain risk management: An AI-driven framework integrating sensor, operational, and external intelligence. Journal of computer science and technology studies, 7(9), 657–673. https://doi.org/10.32996/jcsts.2025.4.1.77

  30. [30] Rahman, M. H., Ansar, M. T. Bin, Hossain, S., Saha, U. S., Imam, H., & Ahsan, I. T. (2025). AI-powered QA in healthcare software: Leveraging predictive analytics and digital twins for safe, cost-effective, and Agile medical systems. Journal of computer science and technology studies, 7(9), 619–628. https://doi.org/10.32996/jcsts.2025.4.1.70

  31. [31] Rahman, M. H., Anwar, M. M., & Hossain, F. (2025). AI-driven big data and business analytics: Advancing healthcare, precision medicine, supply chain resilience, energy innovation and economic competitiveness. Journal of medical and health studies, 6(3), 205–215. https://doi.org/10.32996/jmhs.2025.6.3.30

  32. [32] Ridzuan, A. R., Rahman, N. H. A., Singh, K. S. J., Borhan, H., Ridwan, M., Voumik, L. C., & Ali, M. (2024). Assessing the impact of technology advancement and foreign direct investment on energy utilization in malaysia: An empirical exploration with boundary estimation. Technology and business model innovation: challenges and opportunities (pp. 1–12). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-55911-2_1

  33. [33] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O. (2011). Scikit-learn: Machine learning in Python. The journal of machine learning research, 12, 2825–2830. https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf?source=post_page

  34. [34] Voumik, L. C., Akter, S., Ridwan, M., Pujiati, A., Handayani, B. D., Keshminder, J. S. (2023). Exploring the factors behind renewable energy consumption in Indonesia: Analyzing the impact of corruption and innovation using ARDL model. International journal of energy economics and policy, 13(5), 115–125. https://doi.org/10.32479/ijeep.14530.

  35. [35] Herzen, J., Lässig, F., Piazzetta, S. G., Neuer, T., Tafti, L., Raille, G. (2022). Darts: User-friendly modern machine learning for time series. Journal of machine learning research, 23(124), 1–6. https://www.jmlr.org/papers/volume23/21-1177/21-1177.pdf

  36. [36] Rahman, M. H., Hossin, M. E., Hossain, M. J., Uddin, S. M. M., Faruk, M. I., Anwar, M. M., & Hossain, F. (2024). Harnessing big data and predictive analytics for early detection and cost optimization in cancer care. Journal of computer science and technology studies, 6(5), 278–293. https://doi.org/10.32996/

  37. [37] Hossain, T. (2022). A comparative analysis of adversarial capabilities, attacks, and defenses across the machine learning pipeline in white-box and black-box settings. Appl res artif intell cloud comput, 5(1), 195–212. https://core.ac.uk/download/pdf/613211540.pdf

  38. [38] Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. 31st conference on neural information processing systems (NIPS 2017), long beach, Ca, USA. (Vol. 30, pp. 4768–4777). NIPS. https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf

  39. [39] Zareba, M., Cogiel, S., Danek, T., & Weglinska, E. (2024). Machine learning techniques for spatio-temporal air pollution prediction to drive sustainable urban development in the era of energy and data transformation. Energies, 17(11), 2738. https://doi.org/1073/17/11/2738

  40. [40] Urbee, A. J., Ridwan, M., & Raihan, A. (2024). Exploring educational attainment among individuals with physical disabilities: A case study in Bangladesh. Journal of integrated social sciences and humanities, 1–16. https://doi.org/10.62836/jissh.v1i1.181

  41. [41] Mozumder, M. A. S., Nguyen, T. N., Devi, S., Arif, M., Ahmed, M. P., Ahmed, E., … & Uddin, A. (2024). Enhancing customer satisfaction analysis using advanced machine learning techniques in fintech industry. Journal of computer science and technology studies, 6(3), 35–41. 10.32996/jcsts.2024.6.3.4

  42. [42] Hossain, M. N., Anjum, N., Alam, M., Rahman, M. H., Taluckder, M. S., Al Bony, M. N. V., … & Jui, A. H. (2024). Performance of machine learning algorithms for lung cancer prediction: a comparative study. International journal of medical science and public health research, 5(11), 41–55. https://doi.org/10.37547/ijmsphr/Volume05Issue11-05

  43. [43] Lim, B., Arık, S. Ö., Loeff, N., & Pfister, T. (2021). Temporal Fusion Transformers for interpretable multi-horizon time series forecasting. International journal of forecasting, 37(4), 1748–1764. https://doi.org/10.1016/j.ijforecast.2021.03.012

  44. [44] Arif, M., Hasan, M., Al Shiam, S. A., Ahmed, M. P., Tusher, M. I., Hossan, M. Z. (2024). Predicting customer sentiment in social media interactions: Analyzing Amazon help Twitter conversations using machine learning. International journal of advanced science computing and engineering, 6(2), 52–56. https://doi.org/10.62527/ijasce.6.2.211

  45. [45] Yang, R. (2018). Omphalos, uber’s parallel and language-extensible time series backtesting tool. Acceso el, 19. https://www.uber.com/blog/omphalos/

  46. [46] Tasneem, H., Chowdhury, A. A. A., Sayem, S. S. U., & Emon, A. K. (2025). Exploring the impact of FinTech and IT management on sustainability: Evidence from the United States using ARDL analysis. Environment, innovation and management, 1, 1–22. https://dx.doi.org/10.1142/S3060901125500140

  47. [47] Chowdhury, A. A. A., Sayem, S. S. U., Hossain, T., Emon, A. K., Rafi, A. H., & Alam, S. (2025). Unlocking load capacity potential: The synergy of financial technology and ICT in the United States. Information sciences and technological innovations, 2(1), 57–71. https://doi.org/10.48314/isti.v2i1.35

  48. [48] Holnicki, P., Kałuszko, A., & Nahorski, Z. (2022). Scenario analysis of air quality improvement in Warsaw, Poland, by the end of the current decade. Atmosphere, 13(10), 1613. https://doi.org/10.3390/atmos13101613

  49. [49] Rahman, M. H., Das, A. C., Shak, M. S., Uddin, M. K., Alam, M. I., Anjum, N., … & Alam, M. (2024). Transforming customer retention in fintech industry through predictive analytics and machine learning. The american journal of engineering and technology, 6(10), 150–163. https://doi.org/10.37547/tajet/Volume06Issue10-17

  50. [50] Chojnacka, K. J. (2024). The climate-neutral economy and the air pollution in Poland after 2000: A descriptive and model approach based on the energy market and the industry sector. Myśl ekonomiczna i polityczna, 81(2), 35–55. 10.26399/meip.2(81).2024.08/k.j.chojnacka

  51. [51] Kurasz, A., Lip, G. Y. H., Święczkowski Michałand Tomaszuk-Kazberuk, A., Dobrzycki, S., & Kuźma, Ł. (2025). Air quality and the risk of acute atrial fibrillation (EP-PARTICLES study): A nationwide study in Poland. European journal of preventive cardiology, 1–22. https://doi.org/10.1093/eurjpc/zwaf016

Published

2025-06-04

How to Cite

Machine Learning-Driven Predictive Models for Urban Sustainability in the Context of Digital Transformation. (2025). Innovations in Environmental Economics , 1(2), 96-108. https://doi.org/10.48313/iee.v1i2.42